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1 Introduction

Modal logic is hardly new; it has been treated both formally and informally in philosoph-
ical works over the past few centuries. The modern study of modal logic was initially
proof-theoretic; the first half of the 20th century saw the introduction and axiomatiza-
tion of various systems of modal logic. Tarski and others pioneered an algebraic approach,
studying modal logics as extensions of Boolean algebras with operators representing modal-
ities.

The model-theoretic study of modal logic had a later start, but harboured one of the most
important developments in the theory of modal logics – Kripke’s introduction of possible
worlds semantics (PWS) provided concrete structures over which modal formulas could
be interpreted. Broadly, Kripke’s “possible worlds” reside in a relational structure (W,R)
where W is a set of “worlds”, and R is a relation between these worlds – given a world
w ∈W , R tells us what other worlds we can get to from w.

While Kripke’s PWS have applications in the study of the properties of modal logics –
soundness, completeness, etc – on a more general, moral level they exemplify that modal
logic is the “natural language” of relational structures. Blackburn et al. begin their text
Modal Logic with slogans reflecting this:

Modal languages are simple yet expressive languages for talking about relational
structures. Modal languages provide an internal, local perspective on relational
structures.

This is why modal logics have enjoyed extensive study outside of philosophy and mathe-
matical logic departments, in areas such as computer science and linguistics. Relational
structures are everywhere; the canonical example in the field of computer science is the
transition system, a concept which is invaluable to formal language theory, model checking,
artificial intelligence, and so on.

In this paper, we lift this understanding of (propositional) modal logics with respect to
relational structures to a higher level of generality, providing semantics for modal logics in
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terms of the category-theoretic notion of a coalgebra. Coalgebras capture the general notion
of state-based systems evolving over time1 – streams, transition systems, infinite trees – so
it is natural to look at modal logic as a language to express properties of coalgebras. We
will follow the development of coalgebraic semantics for modal logic in a roughly historical
order, and see how this coalgebraic approach affords us a unifying view of notions such as
behavioural equivalence, bisimulation, and expressivity of logics. We will not really touch
deduction systems, axiomatizations, or algebraic theories of modal logic; while these topics
have their place in discussions of coalgebras and modal logic, we focus on the semantic
aspects.

2 A general semantic approach to modal logic

We begin by describing a general approach to providing the semantics of a modal logic
in a standard method over relational structures. Having outlined this approach, we will
be able to contrast this approach with the coalgebraic methods we introduce later in the
paper. Beyond that, it’s nice to be precise about what it is we are generalizing in the first
place.
Definition 2.1. A (modal) similarity type τ is a collection of modal operators, along with
a function ar : τ → ω mapping an operator to its arity. While technically a similarity type
is a tuple containing both the set of operators and the arity function, it is convenient to
simply consider it as the set of operators and leave ar implicit, and write ♥ ∈ τ for an
operator ♥.

Now, let AP be a countable set of atomic propositions.
Definition 2.2. Given a modal similarity type τ and a set of propositions AP , we can
inductively define the set Fτ (AP ) of modal τ -formulas over AP as follows:

Fτ (AP ) 3 ϕ,ψ ::= p ∈ AP | > | ¬ϕ |ϕ ∨ ψ | ♥(ϕ1, . . . , ϕn) ♥ ∈ τ, n = ar(♥)

As usual, we define ϕ → ψ and ϕ ↔ ψ as abbreviations, ⊥ = ¬>, ϕ ∧ ψ = ¬(¬ϕ ∨
¬ψ) and for each ♥ ∈ τ of arity n we can define the dual operator

♥
(ϕ1, . . . , ϕn) =

¬♥(¬ϕ1, . . . ,¬ϕn). If the particular set of atomic propositions is not important, we’ll
merely write Fτ .
Definition 2.3. Given a similarity type τ , a τ -frame F is a tuple (S,R) where S is a set
of states and R is a collection of relations R♥ indexed by ♥ ∈ τ , where R♥ ⊆ Sar(♥)+1.

Note the connection to Kripke’s possible worlds. We almost have enough information here
to define the truth of a formula in Fτ . The remaining piece of the puzzle is:

1Well, in categories where it makes sense to discuss the “state” of an object, at least. In this paper we
will be focusing on the category Set.
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Definition 2.4. Given a τ -frame F, a valuation is a function V : AP → P(S) mapping
an atomic proposition to the states in which it holds. A τ -model M is a triple (S,R, V ),
where (S,R) is a τ -frame and V is a valuation on S.

Intuitively, we think of the atomic propositions as the observations we can make about
states. From a logical perspective (as well as in applications), we cannot in general tell
which particular state we are in – we can only tell which propositions hold at the state
we are in. As we will see, this point of view will be reflected quite well in the coalgebraic
setting.

Now we are set to define what it means for a formula to be true, or satisfied. Let [[ϕ]]M
denote the set of states at which ϕ is true. We define [[ϕ]]M inductively on the structure of ϕ:

[[p]]M = V (p)

[[>]]M = S

[[ϕ ∨ ψ]]M = [[ϕ]]M ∪ [[ψ]]M
[[¬ϕ]]M = S \ [[ϕ]]M

[[♥(ϕ1, . . . , ϕn)]]M = {s ∈ S | ∀i.∃si ∈ [[ϕi]]M.R♥(s, s1, . . . , sn)}

We write M, s |= ϕ as another way of saying s ∈ [[ϕ]]M, and M |= ϕ if [[ϕ]]M = S.

Of course, the study of modal logic includes natural questions such as “which formulas hold
regardless of valuation?”, or the stronger “which formulas hold in all frames?” – but the
question with which we will be concerned with is “when do two states (or models) share a
set of satisfied formulas?”. Indeed, the “expressivity” of a logic is a function of its power
to distinguish different properties of its models. For example, an important measure of a
logic’s expressivity is whether or not it has the Hennessey-Milner property – that is, the
ability to distinguish non-bisimilar states.

Bisimilarity is an important concept in the study of the equivalence of systems. Roughly,
two states s, s′ are bisimilar if we can’t tell them apart based on observations, and for
every set of states related to s there is a bisimilar set of states related to s′. Formally,
given two τ -models M,M′ over the same set of atomic propositions AP , a bisimulation
relation E ⊆ S × S′ is a nonempty relation such that if sEs′,

1. s ∈ V (p) ⇐⇒ s′ ∈ V ′(p) ∀p ∈ AP

2. R♥(s, s1, . . . , sn) =⇒ ∀i.∃s′i s.t. siEs
′
i and R♥(s′, s′1, . . . , s

′
n)

3. R♥(s′, s′1, . . . , s
′
n) =⇒ ∀i.∃si s.t. siEi

′ and R♥(s, s1, . . . , sn)

As we will see, bisimilarity will play an important role as well when we view modal logic
through the coalgebraic lens.
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3 Coalgebras

Recall that a τ -frame is a pair (S,R) of states and relations on them. For example, if we
look at τ = {�}, then R is just R�, a binary relation on states. Let R[s] = {s′ ∈ S | sRs′};
we can think of it as a function R[·] : S → P(S). The pair (S,R[·]) is an example of a
coalgebra.
Definition 3.1. Given an endofunctor T : C → C, an T -coalgebra consists of an object
X ∈ C, and a morphism α : X → FX. We call the object the carrier, and the morphism the
structure map. Occasionally we will refer to a coalgebra by its carrier set, if the structure
map is unimportant in context.

So in particular, (S,R[·]) is a P-coalgebra, where P is the covariant powerset functor. If
h : X → Y is a morphism in C, where (Y, β : Y → TY ) is another T -coalgebra, then
h is an T -coalgebra homomorphism if β ◦ h = Th ◦ α. For a given endofunctor T , the
collection of T -coalgebras along with their homomorphisms form a category coalg(T ) of
their own.

As our example above shows, relational structures make excellent examples of T -coalgebras
for endofunctors on Set. We can model a number of types of transition systems with
suitable functors. For example, a labelled transition system consists of states S and a
relation S × A × S for some label set A. This is equivalently represented by a function
S → P(S)A – given a state, you get a function from a label to the set of successor states.
So these transition systems make up T -coalgebras for the endofunctor T = (−)A ◦P.

In our case, the functors we will care about will often be Kripke polynomial functors, which
can be defined inductively by T, T ′ ::= id |C | P |T ◦ T ′ |T + T ′ |T × T ′ |TD, where C is a
constant functor and D some set.

As we can model transition systems with coalgebras, it is natural to want to lift the
concept of bisimulation to the categorical setting. There are a few ways to go about
this. One particularly strong generalization is the following: given a set endofunctor T ,
let S = (S, γ) and S′ = (S′, γ′) be two T -coalgebras. A relation B ⊆ S × S′ is called a
bisimulation between S and S′ if we can endow it with a structure map β : B → TB such
that the associated projections π1 : B → S and π2 : B → S′ are coalgebra homomorphisms.
Two states related by B are said to be bisimilar.

A more intuitive, slightly weaker notion which captures similar ideas is the property of
behavioural equivalence. Once again using T -coalgebras S, S′, we say s ∈ S and s′ ∈ S′
are behaviourally equivalent if there is a T -coalgebra (X, ξ) and coalgebra homomorphisms
f : S → X, f ′ : S′ → X such that f(s) = f ′(s′). Bisimulation is a stronger condition;
bisimilar states are behaviourally equivalent.
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Finally2, if a T -coalgebra (Z, ζ) is such that for any other T -coalgeba, there is a unique
homomorphism into Z, then (Z, ζ) is the final T -coalgebra. Up to isomorphism, this Z is
unique. The existence of a final coalgebra is not guaranteed, when they do exist they are
very useful. For example, in the presence of a final coalgebra Z, two states in coalgebras
S, S′ are behaviourally equivalent ⇐⇒ the respective unique maps into Z take the states
to the same element of Z.

4 A first approach

Since coalgebras neatly encompass a general notion of evolving systems and observations, it
seems natural to seek a coalgebraic approach to modal logic. The first step in this direction
was an influential paper by Lawrence Moss, simply titled Coalgebraic Logic. Moss gives a
method to obtain modal logics parametric in a set functor T , but these logics are somewhat
unfamiliar. The logic can’t be specified by a similarity type; you don’t get to specify its
operators. Instead, a logic obtained in Moss’ manner has a single operator3 ∇ called the
cover modality, whose semantics are derived in a preordained fashion straight from the
functor T .

In the original approach, Moss defined an infinitary modal logic LT given an endofunctor
T : SET→ SET4. The class of formulas, instead of being induced from a modal similarity
type, is defined to be the least class LT such that LT = PLT + TLT . For this to exist,
T must be monotone and set-based, however the details of this are unimportant for our
discussion.

The associated left and right injections are, respectively,
∧

: PLT → LT and ∇ : TLT →
LT , where the former is interpreted as infinitary conjunction and the latter introduces
formulas whose structure depends on T . This is in important characteristic of Moss’ logic:
instead of introducing operators and manually specifying semantics tying the behaviour of
the operator to the structure of the system captured by T , the structure of the system is
used directly to generate a new modality. This contrasts with another approach we will
outline later.

The coalgebraic aspect of the logic is the semantic interpretation of the formulas in LT . The
semantics are defined in a somewhat opaque way; instead of presenting them, we will later
look at a finitary version of this logic, and work with that instead. However, we began by
presenting Moss’ infinitary logic for the purposes of historical perspective. In the theory of
infinitary modal logic, an important characterization theorem says that two models satisfy

2Hah!
3Moss used ∆, but keeping with more modern treatments of Moss’ logic we flip the ∆ on its head.
4Where SET is the category of classes and class functions f : C → D s.t. f(C) =

⋃
f(c), where the

union is taken over all subsets c of the class C. Such a function is called set-continuous
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the same infinitary formulas ⇐⇒ the models are bisimilar. The models have a clearly
coalgebraic structure, as a pair (A, f : A→ P(A)×P(AP )), and Moss sought to generalize
this sort of characterization result to other structures, generating logics which were strong
enough to distinguish bisimilar models whose structure is specified by a functor T .

So Moss took infinitary modal logic (which has the usual operators �,♦ and is interpreted
over the usual Kripke structures) and generalized it to an infinitary logic with an operator
∇ interpreted over structures described by T . However, the interpretation of ∇ is not
exactly intuitive. Beyond that, providing semantics for formulas in LT required that T
preserve weak pullbacks, which is a somewhat restrictive condition. As a result, further
forays into coalgebraic semantics for modal logic took a different tack.

5 A more intuitive approach

After Moss took the first steps, other researchers such as Alexander Kurz and Dirk Pat-
tinson approached the problem of providing semantics over coalgebras from another angle.
Instead of generating a logic parametric only in the functor T , and providing semantics in a
manner which required T to satisfy a somewhat restrictive set of conditions, this approach,
called predicate lifting, hewed more closely to the standard method of providing semantics
we discussed in Section 1.

In this approach, we are allowed to specify the particular operators we would like our modal
logic to use – as before, we specify the with a similarity type τ . Once again, we work with
respect to a endofunctor T ; in this case we will consider such endofunctors on Set. Since
we provide the operators, naturally we need to provide their interpretation in some way;
to do this, we introduce a τ -structure:
Definition 5.1. Given a modal similarity type τ , a τ -structure is a pair (T, {[[♥]]}♥∈τ ),
of T : Set → Set and an “n-ary predicate lifting” [[♥]](−) : (2(−))n → 2(−) ◦ T , a natural
transformation, for each ♥ ∈ τ .

Note that throughout this paper we use P for the covariant powerset functor and 2(−) for
the contravariant one.

Recall that a similarity type τ induces a set of formulas Fτ (AP ) over a denumerable set of
atomic propositions AP . Here, the syntax of the logic has no relation to the τ -structure;
in Moss’ logic, the syntax was intimately tied to the particular functor T . Whether or
not this is desirable depends on one’s point of view – on one hand, we are free to use the
formulas with which we are familiar, but on the other, we must specify a predicate lifting
for each operator we introduce. We don’t get semantics for free.

Whereas before, we defined models with respect to τ , here we define them with respect to
T :
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Definition 5.2. A T -model M = (S, γ, V ) is a triple such that (S, γ) ∈ Coalg(T ) and
V : AP → P(S).

Given a τ -structure and a T -model M, we are set to define the semantics of formulas in
Fτ ; compare this to the situation in Section 1. For the usual Boolean operations, the
semantics are the same as in Section 1. However, the situation changes for the operators
we introduced:

[[♥(ϕ1, . . . , ϕn)]]M = γ−1 ◦ [[♥]]S([[ϕ1]]M, . . . , [[ϕn]]M)

Roughly, M, s |= ♥(ϕ1, . . . , ϕn) ⇐⇒ γ(w) satisfies the property defining ♥; the idea which
remains fixed in this generalization is that the operator specifies properties of “structured
successors”. Of course, the question is how to define the predicate lifting. To get a handle
on how they should be defined, it’s easiest to look at specific examples. The modal logic K,
i.e. the weakest normal modal logic, interpreted over Kripke frames, is simple and hence a
good first example. Here, τ = {�}, and the T we are interested in is simply the covariant
powerset functor P. For a set of states S, what should [[�]]S be?

The formula �ϕ will be interpreted to hold true for all states s such that γ(s) is in
[[�]]S([[ϕ]]M). We want it to hold for s such that γ(s) all satisfy ϕ; i.e. we want γ(s) ⊆ [[ϕ]]M.
Hence we define [[�]]S(Z) = {Y ⊆ S |Y ⊆ Z}. We can check that this has the correct type
as specified in definition 5.1: indeed, [[�]]S maps a set of states (2S) to a set of sets of states
(2P(S)).

Another, more interesting example is defining Hennessy-Milner logic in this setting. Here,
τ = {[a] | a ∈ A} for some set of actions A, and we interpret the formulas over labelled
transition systems which can be described (as we mentioned earlier) with the set functor
T = (−)A ◦ P. Through a similar process of reasoning we can come to the conclusion that
[[[a]]]S(Z) = {f : A→ PS | f(a) ⊆ Z}.

As we mentioned earlier, Moss’ approach included the limitation that the functor speci-
fying the type of transition system must preserve weak pullbacks. We would be remiss
if we mentioned that the predicate lifting approach doesn’t have this restriction without
giving an example of a transition system type we can treat with this approach but not
Moss’; otherwise one might conclude that the weak pullback-preservation isn’t much of a
restriction after all.

Neighbourhood frames are another structure for interpreting standard modal logic; instead
of looking at relational structures (W,R) like we described in the introduction, the relation

between worlds is captured by a function N : W → 22
W

, where the subsets of W in N(w)
represent sets of worlds obeying some proposition. As an example, in this framework one
would say M, w |= �ϕ ⇐⇒ [[ϕ]]M ∈ N(w). Neighbourhood frames were studied indepen-
dently by both Dana Scott and Richard Montague. In this case, the functor describing the
structure is T = 2(−) ◦ 2(−); this does not preserve weak pullbacks.
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6 Return to the cover modality

Following our historical treatment of the development of coalgebraic modal logics, we return
to the cover modality approach initiated by Moss. As the predicate lifting approach allowed
one to provide coalgebraic semantics for a logic whose syntax was supplied, rather than
generated, and supported a wider variety of functors T , attention was directed away from
Moss’ approach. However, results outside of the coalgebraic program would help turn some
of the spotlight back onto Moss’ approach.

The paper Automata for the modal µ-calculus and related results by David Janin and Igor
Walukiewicz reconstructed classical modal languages using a connective a → Φ, where
Φ is a set of formulas and a ∈ A, an action set; this reconstruction was an important
proof technique in showing some nice results about the µ-calculus. The semantics of this
connective were identical to the cover modality in such a setting; noting this connection,
Yde Venema and Kupke showed that many important results in the theory of fixpoint
logics could be lifted to the generalized coalgebraic setting. In the following years, more
focus was devoted to Moss’ approach.

Now we will describe a finitary version of the logic LT described before; this presentation is
due to Kupke and Pattinson. Let T : Set→ Set be a standard5 functor, and let Tω denote
the finitary part of T ; TωX =

⋃
TY , where the union is taken over all finite subsets Y ⊆ X

(we denote this Y ⊆ω X). We define LT as the smallest set of formulas closed under the
following rules:

> ∈ LT
Φ ⊆ω LT∧

Φ ∈ LT
Φ ⊆ω LT∨

Φ ∈ LT
ϕ ∈ LT
¬ϕ ∈ LT

Φ ⊆ω LT α ∈ TωΦ

∇α ∈ LT

In order to define semantics for this logic, we need to introduce the concept of relational
lifting. Given our set endofunctor T , and R ⊆ X1 × X2, the (T -)lifted relation TR ⊆
TX1 × TX2 is the set

TR = {(t1, t2) | ∃z ∈ TR.Tπi(z) = ti for i = 1, 2},

It is a theorem that if T preserves weak pullbacks, then T (R ◦ S) = TR ◦ TS, where R ◦ S
denotes relation composition. This is why we imposed such a requirement on our T . While
in general it may be nontrivial to understand the lifting of some relation, it is easy to
compute for Kripke polynomial functors.

Now, to provide the semantics of ϕ ∈ LT , we fix a T -coalgebra (S, γ) and define the satis-
faction relation |=⊆W×LT by induction in the obvious way for conjunctions, disjunctions,

5Maps set-theoretic inclusions to inclusions.

8



>, and negations. The interesting case is the semantics of the cover modality6:

s |= ∇α if (γ(s), α) ∈ T (|=)

As in the case of predicate liftings, we can gain a better understanding of what’s going by
looking at an example. In the case of a Kripke structure, the relevant functor is T = P.
Hence we get modal formulas ∇{ϕ1, . . . , ϕn}, since ∇α is a formulas for α ∈ PωΦ for some
finite subset Φ ⊆ LP . If we chase through the definitions, we see that s |= ∇{ϕ1, . . . , ϕn}
iff

∀i .∃s′ ∈ γ(s) s.t. s′ |= ϕi and ∀s′ ∈ γ(s) . ∃i s.t. s′ |= ϕi

Or, using the standard �,♦ semantics, s |= ∇{ϕi} if s |=
∧
i ♦ϕi ∧�

∨
i ϕi, for some finite

set of formulas {ϕi}. In particular, we can recover the usual operators for modal logic over
Kripke structures using the cover modality (this is the property Janin and Walukiewicz
used, for their connective).

7 Expressivity

As we’ve mentioned before, the ability for logics to distinguish bisimilar states is an impor-
tant landmark on the scale of expressivity. In the coalgebraic setting we’ve introduced the
notions of bisimilarity and behavioural equivalence as appropriate generalizations. Since
behavioural equivalence is a weaker but still sufficient characterization of our usual idea
of bisimilarity, we’ll use it as our line in the sand – we will say a logic is expressive if two
non-similar states can be distinguished by a formula. Let’s look at how the approaches of
predicate lifting and relational lifting allow us to test for expressivity.

As we mentioned when discussing the origin of Moss’ (relational lifting) approach, it was
an attempt to generalize expressivity properties of infinitary modal logics to structures
described by a suitable functor T . As long as T is finitary, then the ∇ logic we recover
it via relational lifting is expressive7. For weak pullback-preserving functors, behavioural
equivalence can be characterized by the lifting T , so any ∇ formula’s truth value is the
same for behaviourally equivalent states.

On the other hand, if T is finitary, then Coalg(T ) contains a final coalgebra (Z, ζ) whose
structure we can understand – in a technique which seems indispensable for theoretical
computer science, we can generate the carrier Z as a greatest fixed point with iterates Tn1,

6Technically this should be treated in levels by defining the modal depth of a formula, and for ∇α of
modal depth n + 1, lifting the restriction of the |= relation to formulas of modal depth at most n, so the
definition is well-founded. However, if T is standard and preserves weak pullbacks, the definition will be
equivalent. For more details, see the references.

7In fact, for weak pullback-preserving functors, behavioural equivalence and bisimilarity coincide.
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for n < ω. Then any state’s is characterized by some finite process; we can inductively
define formulas to characterize states by this n-step behaviour.

The situation is different for logics defined via predicate liftings. We do not get such an
elegant characterization; instead, since we defined the semantics, we must deal with the
fact that our definitions may lead to a weak logic. While it is true for any τ -structure that
behavioural equivalence will lead to the two states satisfying all the same formulas, the
other direction is more stringent. In particular, T must be finitary, and the map

TS →
∏

♥∈τ n-ary
P(P(X)n)

defined on each factor by sending t 7→ {(A1, . . . , An) ⊆ Xn | t ∈ [[♥]](A1, . . . , An)} must be
injective. It isn’t too hard to see why, at least intuitively – we need to be able to distinguish
structured successors by our operators, so in a sense there must be “enough” operators to
tell them apart. If the map defined above is injective, then we say the τ -structure is
separating.

To summarize, in both cases we need T to be finitary in order to distinguish states which
aren’t behaviourally equivalent. However, this is a sufficient condition as well for logics
defined via relational lifting (Moss’ approach). If the logic is defined via predicate lifting,
then the associated τ -structure must also be separating.

8 Conclusion

Coalgebras give us a way to study the properties of many different modal logics in a unified
framework. By providing a uniform template into which we can mould a variety of models
for modal logics, we can derive conditions on expressivity which apply to each logic we place
in this framework. This gives us a reliable process to follow in order to prove properties
of a new logic – if we can describe it in the coalgebraic framework, a number of theorems
automatically apply.

Beyond that, it’s pleasing to see these ideas in the right place. By fitting pieces of the
theory of modal logic into a grander framework, we are less likely to miss the forest for the
trees. Certainly there are areas in the study of modal logic which require a more involved
and particular approach, but by isolating the aspects which can be solved by more general
means we get a better view of the surrounding territory.
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