
The Expressive Power of the Modal µ-calculus Lµ

Matthew Wetmore

Abstract

A variety of modal logics are very useful for expressing properties of transition
systems one would like to verify for the sake of program correctness. In this paper,
we review the Propositional Dynamic Logic and discuss some of its strengths and
limitations. We then introduce Dexter Kozen’s modal µ-calculus Lµ, motivate its use
of fixed-point operators, and show that Lµ is strictly more expressive than PDL despite
its relative syntactic simplicity.

1 Introduction

Labeled transition systems serve as a powerful abstraction of the behaviour of processes
over time, including the execution of computer programs. Under such an abstraction, we
view the state of our system at a given point as an element in a space of possible states, with
a transition relation ordaining the possible ways to move between states upon occurrences
of some set of actions.

By viewing our processes through the lens of transition systems, we get workable models
for verifying the behaviours of our systems. A whole zoo of logics can be given meaning in
terms of transition systems; this means we can use such a logic to write down properties
of the transition system we would like to verify. Given that there exists an algorithm to
decide whether or not a given system satisfies a particular formula, logics and transition
systems give us convenient methods for verifying properties we would like our processes to
have.

In particular, variants of propositional modal logic have proven quite useful. Such logics
provide ways of reasoning about the truth of propositions over what may be thought
of as possible futures – in our case, possible behaviours of a given process – and let us
express properties such as “something eventually happens” or “something must happen”.
In 1983, Dexter Kozen introduced Lµ, a propositional modal logic whose possible formulas
included fixed-point operators[Koz83]. As we will explore in this paper, the addition of
such operators lead to a rich and expressive logic suitable for formal verification.

1

2 Propositional Dynamic Logic

To get a sense of why one would want fixed-point formulas in the first place, it is helpful
to look at other logics predating the introduction of Lµ. One example is Propositional
Dynamic Logic, or PDL, which gives us ways to build up simple programs and reason
about their executions. Since it is a fairly natural way to express properties we’d like
to verify in our programs, PDL is a useful logic, and has a few extensions with new
allowable formulas and program connectives. These extensions add expressive power; one
can introduce a looping operator ∆, for example, to capture the notion of infinite looping,
which is impossible with vanilla PDL.

Kozen’s Lµ also allows us to talk about these notions, and as we’ll be showing over the
course of this paper, it gives us even more power than PDL, and at least as much power
as PDL with looping.

2.1 Syntax

Propositional Dynamic Logic has the syntax one would expect of a propositional modal
logic:

ϕ,ψ ::= p | ⊥ |ϕ ∨ ψ | ¬ϕ | 〈π〉ϕ

All the usual suspects are here: atomic propositions p ∈ AP are formulas, as is ⊥1. We can
apply the familiar connectives of disjunction and negation to formulas, and by de Morgan
duality we can obtain conjunctions since ϕ∧ψ = ¬(¬ϕ∨¬ψ). Of course, we have modalities
as well – along with 〈π〉ϕ we have its dual [π]ϕ = ¬〈π〉¬ϕ.

What makes PDL special are the labels inside the modalities – π represents a (possibly
non-deterministic) program, and we read 〈π〉ϕ as “some terminating execution of π results
in a state in which ϕ holds”. Dually, [π]ϕ is read as “every execution of π ends in a state
in which ϕ holds”. If these were just basic programs with no inherent structure, than
the logic would not let us express that much. However, PDL lets us construct complex
programs with operations familiar from regular expressions.

Assuming we have a set of basic programs, say a, b, c, . . . ∈ Π, we can define possible
programs in PDL with the grammar:

π1, π2 ::= a |π1 ∪ π2 |π1;π2 |π∗1

We interpret executions of these compound programs in ways their origins in regular ex-
pressions would suggest. An execution of π1 ∪π2 is a non-deterministic execution of either

1We mention ⊥ separately from the atomic propositions since we consider atomic propositions as prop-
erties of states. Semantically we say no states satisfy ⊥, i.e. ⊥ is not a property of any state.

2

π1 or of π2. This is called “choice”; an execution of a “composition”, or π1;π2, is an
execution of π1, then an execution of π2. Finally, executing the Kleene star program π∗

amounts to executing π a finite number of times (possibly 0). This captures the notion of
iteration. Crucially, these constructs are not strong enough to talk about infinite looping;
this limitation motivates the looping operator ∆ mentioned earlier, and is one reason we’ll
be able to show that Lµ is strictly more expressive than PDL.

2.2 Semantics

Since logics like PDL arose from a need to talk about transition systems, naturally we give
the semantics of PDL in terms of transition systems whose transitions are labeled with our
basic programs a, b, . . . ∈ Π. If we consider these basic programs as the atomic actions in
our system – say, assigning a value to a variable, or performing a primitive operation like
addition – then we can look at a transition system whose state space consists of all states
reachable from a set of initial states by performing these atomic actions. In this setting,
compound programs like a∗ let us express properties that may hold after multiple actions
are performed.

We can specify a transition system with a set of states S, a set of starting states S0 ⊆ S, a
set of labels for our transitions L, and a transition relation →⊆ S × L× S (if (s, a, t) ∈→
we write s

a→ t, i.e. “it is possible to make an a transition from s to t”). Hence a transition
system is a quadruple TS = (S,→, S0,L). In our case, since the transition relation is
labeled by atomic programs/actions, the set of labels L is our set of atomic programs
Π.

This is enough to describe the structure of the system, but if we want to talk about what
atomic propositions hold in what states, we need to introduce a denotation D : AP → 2S

as well, mapping atomic propositions to the states in which they hold. We define the
semantics of a formula ϕ in terms of states in which the formula holds, a set which we will
denote [[ϕ]]TS

D , or the interpretation of ϕ – since this set depends on both the transition
system and denotation, we should carry them around in the notation, but usually it is clear
what they are and we drop them, simply writing [[ϕ]].

In order to formalize our notions of executing a program inside a modality, we will induc-
tively define a program valuation ρ as well2, where ρ(π) maps the well-formed program π
to a set of pairs (s, t) such that a terminating execution of π from state s results in state

2Note that the definition of ρ will depend on a given transition system. We could write ρTS to make
this obvious, but it’s not particularly nice to look at.

3

t. We define ρ as follows:

ρ(a) = {(s, t) | s a→ t}
ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1;π2) = {(s, t) | ∃(s, x) ∈ ρ(π1) and ∃(x, t) ∈ ρ(π2)}

In order to define ρ(π∗), we will let ρ(π0) = {(s, s) | s ∈ S} for any program π, and define
ρ(πn+1) = ρ(π;πn). This lets us write

ρ(π∗) =
∞⋃
n=0

ρ(πn)

to define ρ for iterated programs. Now we are set to define the semantics of formulas; we
define [[ϕ]]TS

D inductively as follows:

[[p]]TS
D = D(p)

[[⊥]]TS
D = ∅

[[ϕ ∨ ψ]]TS
D = [[ϕ]]TS

D ∪ [[ψ]]TS
D

[[¬ϕ]]TS
D = S \ [[ϕ]]TS

D

[[〈π〉ϕ]]TS
D = {s ∈ S | ∃t ∈ [[ϕ]]TS

D s.t. (s, t) ∈ ρ(π)}

With the semantics defined, we can say what it means for a state to satisfy a formula; we
write s |= ϕ if s ∈ [[ϕ]], and if s |= ϕ for every initial state s ∈ S0, we may extend our
notion of satisfaction to the whole transition system TS, writing TS |= ϕ.

Our presentation of the syntax and semantics is a slightly modified take on the approach
outlined in Michael Fischer and Richard Ladner’s original paper[FL79] on PDL, with some
inspiration from another paper on PDL[Ber81].

2.3 The small model property

When we wrote s |= ϕ, we left it unsaid that such a judgement depends on some TS and
D; when we wrote TS |= ϕ the denotation D was left implicit as well. It would be more
proper to write (TS,D) |= ϕ, but often when we talk about a given transition system, we
also fix a particular D, so we drop it in our notation.

The tuple (TS,D) contains all the information about a structure needed to interpret for-
mulas in PDL; (TS,D) is a model in PDL. In the literature on PDL, models are often
triples (S,D, ρ), where the structure of the transition system is determined by the states
S and relations in ρ. In order to maintain similarity between models in PDL and models
we will see later for Lµ, we’ve defined ρ in terms of a transition system TS instead, so our

4

models look slightly different, but still encode the same information. For the rest of this
paper, we will use “transition system” and “model” interchangeably and refer to models
with TS, with some arbitrary denotation D left implicit.

While the syntax of PDL allows us to write down a fairly large variety of formulas, they
might not all be satisfiable; for example, the formula ϕ ∧ ¬ϕ can never be satisfied by
any state, no matter the model. We say such a formula is not satisfiable; a formula ϕ is
satisfiable if there exists a model TS such that TS |= ϕ.

PDL has a rather desirable property known as the small model property, which states that
is ϕ is a satisfiable PDL formula, there exists a finite model TS (that is, |S| < ∞) which
satisfies ϕ. The size of this finite model is proportional to the size of the particular formula,
which makes satisfiability decidable given that model-checking is decidable (check every
model up to the finite bound)3. A number of logics have the small model property; many
modal logics do.

In fact, PDL has a slightly stronger property, often called the finite quotient property,
which we will see as we prove the small model property. The small model property is shown
by using a standard technique called filtration, in which a model is “filtered through” a
particular set of formulas to give an equivalent finite model.
Theorem (Small model property for PDL). If ϕ is a satisfiable theorem in PDL, then
there exists a finite model TS such that TS |= ϕ.

Proof. Let TS′ be a model satisfying ϕ, with state space S′. We will use TS′ to construct a
model TS which also satisfies ϕ. Let Γ be the Fischer-Ladner closure of ϕ; this consists of
the sub-formulas of ϕ and their negations. For modalities, 〈π1〉ϕ and 〈π2〉ϕ are sub-formulas
of 〈π1 ∪ π2〉ϕ, 〈π2〉ϕ as a sub-formula of 〈π1;π2〉ϕ, and 〈π;π∗〉ϕ, 〈π〉ϕ as sub-formulas of
〈π∗〉ϕ. The size of Γ is proportional to the length of ϕ, so it’s finite. Now define an
equivalence relation ∼ on S′ by letting s ∼ t if ∀ψ ∈ Γ, s |= ψ ⇐⇒ t |= ψ. There are
at most 2|Γ| equivalence classes in S′/∼, since each sub-formula has only 2 possible truth
values. If we let S = S′/∼, we can define transitions between equivalence classes such that
[s]

a→ [t] if there exist s′ ∼ s and t′ ∼ t such that s′
a→ t′.

The rest of the proof shows that TS |= ϕ in a fairly straightforward case analysis, omitted
for brevity’s sake. The full proof is given in [FL79]. �

The transition system constructed in the proof of the small model property is the finite
quotient we mentioned before. The quotient transition system can be interpreted in a fairly
intuitive way; we identify similar states, preserving the transitions, so if we have an idea

3A careful reader will notice that this assumes we can recursively enumerate the possible models. We can
do this because if we want to generate models which may satisfy ϕ, we only need to worry about transition
systems whose transition labels (i.e. atomic programs) only range over the set of atomic programs used in
the modalities ϕ, which is finite. See discussion of decidability in chapter 6 of [BdRV02].

5

of the structure of the original transition system which satisfied a given formula, we can
reason about the structure of the quotient system.

2.4 Other extensions of PDL

As we mentioned before, there are formulations of PDL which extend the logic with new
operators. One such extension by Streett[Str82] adds a delta operator ∆, where ∆π is a
formula (not a program) asserting that there is an infinite sequence of π executions – an
infinite looping of the program. We add ∆ semantically by saying s ∈ [[∆π]] if there exists
a sequence of states (sn)∞n=0 such that s0 = s and (sn, sn+1) ∈ ρ(π) for all n.

Adding this operator (obtaining “delta-PDL”) gives a strictly more expressive logic; for
example we can write ¬∆a, a formula which is true at s if and only if there are no infinite
a paths starting at s. As we will see in the next section, such a notion is impossible to
express with vanilla PDL. However, this expressive power comes at the expense of the finite
quotient property – while delta-PDL satisfies the small model property, the proof does not
use the same filtration technique.

3 The Modal µ-Calculus Lµ

Propositional Dynamic Logic gave us a nice way to reason about the behaviour of simple
programs, but fell short when it came to expressing inherently infinite properties like
looping. We saw a way to extend PDL to address this shortcoming. However, extensions
to PDL only add syntactic complexity to a system which is already somewhat complex. A
rough rule of thumb is that the syntactic complexity of a logic is inversely proportional to
its usefulness – while this complexity allows greater levels of expressivity, it comes at the
cost of making the logic harder to reason about, and adds more cases to proofs.

Kozen was not the first to use fixed-point operators in a logic; he notes that Dana Scott
and Jaco de Bakker introduced the idea (in a paper which is unfortunately unpublished) in
1969, adding the least fixed-point operator µ to propositional modal logic. Pratt expanded
on the idea by introducing Pµ[Pra81], where µ is a least-root operator instead of least
fixed-point, in a boolean algebra. That is, given a boolean algebraic term ϕ(~X) with free
variables ~X = (X1, . . . , Xk) which may take on term values, µ ~X.ϕ(~X) is the least vector
of terms ~ψ such that ϕ[~ψ/ ~X] = 0, or false (so the least root4 of ϕ(~X)). Pratt’s logic also
enforced a particularly strong syntactic restriction on allowable formulas which rendered
illegal a number of useful formulas.

4Least as in at the bottom of a lattice of roots generated by the partial order on terms such that x ≤ y
if x ∨ y = y.

6

The approach taken with Pµ gave a syntactically simpler logic which subsumed PDL while
maintaining the finite quotient property. However, upon its introduction, it was unclear
whether Pµ was strictly more expressive than PDL, and by rendering µ as a least-root
operator instead of a least fixed-point operator, Pratt’s logic left behind a number of proof
techniques applicable to least fixed-points. Kozen’s Lµ relaxed the syntactic restraints and
represented µ as a least fixed-point operator, and upon its introduction it was shown that
Lµ was strictly more expressive than PDL.

3.1 Syntax

The syntax of Lµ is, for the most part, familiar from our discussion of PDL:

ϕ,ψ ::= p | ⊥ |X |ϕ ∨ ψ | ¬ϕ | 〈a〉ϕ |µX.ϕ(X)

As before, p is an atomic proposition in the set AP . Here, instead of programs, our
modalities are labeled with actions from our labelling set L, which will correspond to
transition actions when we give the semantics.

The obvious difference which jumps out quite quickly is the addition of the least-fixed point
operator µ from which the logic derives its name. However, its introduction is contingent
on another feature which PDL lacked: formulas with variables which one may quantify
over, which we will refer to as parametric formulas. Propositional variables like X may be
added to formulas, and bound by a µ, an action which carries with it all the familiar notions
of free variables, capture, scope, closed formulas, etc from first-order predicate logic. The
manner in which these variables are interpreted depends on the semantics, which we will
introduce soon.

In order for a parametric formula ϕ(X) to appear in µX.ϕ(X), it must satisfy an additional
syntactic restriction known as positivity – that is, X must appear free, and in the scope of
an even number of negations. Keeping this in mind, we note that the greatest fixed-point
operator may be obtained as the dual of µ: νX.ϕ(X) = ¬µX.¬ϕ(¬X).

3.2 Semantics

As with PDL, we give the semantics of Lµ by defining inductively the sets of states at which
a particular formula holds. Models of Lµ will have the a similar structure – as before, we will
have a transition system TS and denotation function D : AP → 2S , but we will also need a
way to say what variables mean. To this end, we also require a function F mapping proposi-
tional variables like X to sets of states. We can write F [X 7→ T] to describe such a function

7

which agrees with F on every variable except possibly for X, which it maps to T ⊆ S.

[[p]]TS
D,F = D(p)

[[X]]TS
D,F = F (X)

[[⊥]]TS
D,F = ∅

[[ϕ ∨ ψ]]TS
D,F = [[ϕ]]TS

D,F ∪ [[ψ]]TS
D,F

[[¬ϕ]]TS
D,F = S \ [[ϕ]]TS

D,F

[[〈a〉ϕ]]TS
D,F = {s ∈ S | ∃t ∈ [[ϕ]]TS

D,F s.t. s
a→ t}

[[[a]ϕ]]TS
D,F = {s ∈ S | ∀t.s a→ t =⇒ t ∈ [[ϕ]]TS

D,F }

[[µX.ϕ(X)]]TS
D,F =

⋂
{T ⊆ S |T ⊇ [[ϕ(X)]]TS

D,F [X 7→T]}

While we could have obtained [[[a]ϕ]] by writing [a]ϕ = ¬〈a〉¬ϕ and computing, we include
it here explicitly for perspicuity’s sake. The notation is unfortunately heavy, but we can,
as before, drop the annotations and simply write [[ϕ]].

To understand the semantics of fixed-point formula, it’s easiest to consider [[ϕ(X)]]TS
D,F [X 7→T]

as the application of a function (Q 7→ [[ϕ(X)]]TS
D,F [X 7→Q]) : 2S → 2S to T . For simplicity, we

will consider formulas with only one propositional variable, and abuse the notation5 a bit
to write (Q 7→ [[ϕ(X)]]TS

D,F [X 7→Q]) as [[ϕ(X)]]. Hence, by the Knaster-Tarski theorem applied
to the complete powerset lattice of sets of states, [[µX.ϕ(X)]] is the least fixed-point of the
function [[ϕ(X)]], which can easily be seen to be monotonic when ϕ(X) obeys the positivity
restriction we enforced earlier.

In the general lattice-theoretic setting, if f is a monotonic function on a complete lat-
tice, then µf =

∨
n f

n(⊥). In our setting and notation, this means that [[µX.ϕ(X)]] =⋃
n [[ϕn(⊥)]]. This gives us an iterative method for computing the fixed-point by succes-

sively computing [[ϕ(⊥)]], [[ϕ(ϕ(⊥))]], and so on. This process takes at most |S|+1 iterations
to converge to the actual fixed point, and if a state is in [[µX.ϕ(X)]], then it’s in [[ϕn(⊥)]]
for some n, and its inclusion depends on some state (or states) in [[ϕn−1(⊥)]]. Hence for
each state in [[µX.ϕ(X)]], there is a finite chain of “dependencies”, from which we may reap
an intuitive view of µ as expressing properties of some finite but possibly arbitrary-length
character.

A concrete example of this intuition can be seen by computing the semantic meaning of
the formula µX.[a]X. We start by plugging in ⊥ for X: [[[a]⊥]] = {s ∈ S | ∀t.s a→ t =⇒
t ∈ [[⊥]]}. Since [[⊥]] is empty, [[[a]⊥]] is the set of all states with no outgoing a transitions.
Iterating, [[[a][a]⊥]] = {s ∈ S | ∀t.s a→ t =⇒ t ∈ [[[a]⊥]]}, i.e. the set of all states whose a
transitions all go to states with no outgoing a transitions. If a state is in [[[a][a]ϕ]], then it
“depends” on the states in [[[a]⊥]] to which it may make an a transition.

In general, if s ∈ [[[a]n+1⊥]], then every a path starting at s is length n. Hence a state
satisfies µX.[a]X if every a path starting at s is of finite length. In terms of the looping

5In the presence of a single variable, and with the understanding that we will be considering parametric
formulas which will be bound by a fixed-point operator, this is not ambiguous.

8

operator for PDL we defined earlier, µX.[a]X is equivalent to ¬∆a – there are no infinite
a paths starting from a state which satisfies either formula.

Our presentation of Lµ is derived mostly from [BS06], as well as [Koz83], which introduced
the logic.

4 Expressing PDL in Lµ

Since PDL and Lµ are both modal logics over transition systems, we can discuss equivalence
of formulas in either language. Two formulas, say ϕ in PDL and ψ in Lµ, are said to be
equivalent if they agree on every model, i.e. TS |= ϕ ⇐⇒ TS |= ψ. We can express
PDL in Lµ, which means that every PDL formula has an Lµ equivalent. Since PDL and
Lµ are largely similar in syntax and semantics, every translation of a formula without a
modality is trivial, e.g. p ∨ q is the same in either logic. However, PDL has a structure to
its modalities which Lµ lacks, at least on the surface.

We can express the modalities of PDL in Lµ by “unpacking” them. If we use 〈〈π〉〉 to denote
the Lµ equivalent of 〈π〉, then we can inductively define this translation by 〈〈a〉〉ϕ = 〈a〉ϕ,
〈〈π1∪π2〉〉ϕ = 〈〈π1〉〉ϕ∨〈〈π2〉〉ϕ and 〈〈π1;π2〉〉 = 〈〈π1〉〉〈〈π2〉〉ϕ. So, for example, the translation
of 〈a; (b ∪ c)〉ϕ into Lµ is 〈a〉(〈b〉ϕ ∨ 〈c〉ϕ). We could have made these translations in a
bunch of modal logics, but expressing 〈π∗〉ϕ requires the power of Lµ. This is done by
letting 〈〈π∗〉〉ϕ = µX.ϕ ∨ 〈〈π〉〉X.

To understand the translation, it helps to realize that programs define possible paths in
the underlying transition system. Hence 〈〈π〉〉ϕ is satisfied at a state s if there is a path
described by π from s to somewhere where ϕ holds. Since atomic programs correspond
to single transitions, the translation of 〈a〉ϕ from PDL doesn’t change the formula. For
the program π1 ∪ π2, if we assume by the induction hypothesis that 〈〈π1〉〉ϕ and 〈〈π2〉〉ϕ
are proper translations of the PDL formulas 〈π1〉ϕ and 〈π2〉ϕ, then 〈〈π1〉〉ϕ∨〈〈π2〉〉ϕ asserts
there is a path described by π1 or a path described by π2 ending in a state in which ϕ holds,
which is what defined 〈π1 ∪ π2〉ϕ. The translation of 〈π1;π2〉ϕ follows similarly.

The interesting case is the translation of 〈π∗〉ϕ from PDL to Lµ. We can understand it
in the same manner we used to understand µX.[a]X, via fixed-point iteration. Starting at
the bottom, so to speak, [[ϕ ∨ 〈〈π〉〉⊥]] is the set of all states at which ϕ holds, or there is a
path described by π ending in a state where ⊥ holds. As there are no such paths (⊥ never
holds), [[ϕ ∨ 〈〈π〉〉⊥]] = [[ϕ]]. Iterating, [[ϕ ∨ 〈〈π〉〉(ϕ ∨ 〈〈π〉〉⊥)]] is the set of all states which
satisfy ϕ, or from which there is a path described by π to a state at which ϕ∨〈〈π〉〉⊥ holds,
i.e. a state at which ϕ holds.

In general, s |= µX.ϕ ∨ 〈〈π〉〉X if and only if there is a sequence of paths described by π
from s to a state satisfying ϕ. This is precisely the condition defining 〈π∗〉ϕ in PDL.

9

5 Lµ is strictly more expressive

Now that we know every PDL formula has an Lµ equivalent, it’s natural to ask if the
converse is true. Having spoiled the answer already in the paper’s abstract, it’s time to
give a proof of what we’ve claimed multiple times already. Kozen’s Lµ is strictly more
expressive than PDL, in that there exist formulas in Lµ with no PDL equivalent. This is
a result of the following theorem:
Theorem. The Lµ formula µX.[a]X has no PDL equivalent.

Proof. Recall two formulas are equivalent if they have the same truth value on every
model. Assume for a contradiction that ϕ is a PDL formula equivalent to µX.[a]X, so that
TS |= ϕ ⇐⇒ TS |= µX.[a]X. In particular, consider the transition system TS pictured
in Figure 1. For any natural number n, the transition system contains an initial a path of
length n, but there are no infinite paths. Hence TS |= µX.[a]X, and consequently TS |= ϕ.
While TS is an infinite transition system, the small model property of ϕ allows us to filter
the system and obtain TSFIN , a finite transition system such that TSFIN |= ϕ as well.

s

...

· · ·

. . .

a
a a a

a

a a

a

a

a

a

a

Figure 1: The transition system TS

However, since TSFIN is finite, the filtra-
tion process must have introduced a loop.
Suppose TSFIN has n states and consider
the a path of length n in TS, with states

s0, . . . , sn where s0 = s, such that sk
a→

sk+1 for 0 ≤ k < n. By the pigeonhole
principle, at least 2 states, say si and sj ,
for i < j, must be identified to a single
state in TSFIN , introducing a loop: in
TSFIN there is a path from [si] to [sj−1],

and [sj−1]
a→ [sj], but [sj] = [si].

Since TSFIN contains a loop, there is an infinite a path in TSFIN . Hence we find that
TSFIN 6|= µX.[a]X – a contradiction, since TSFIN |= ϕ and ϕ was assumed to be equivalent
to µX.[a]X. �

As we noted earlier, µX.[a]X is equivalent to the delta-PDL formula ¬∆a, so this proof
serves to show that delta-PDL is strictly more expressive than PDL as well (otherwise it
wouldn’t be a particularly useful extension!). In fact, while this proof appeared in Kozen’s
original paper on Lµ, [Koz83], he credits it to Streett, who introduced delta-PDL. While
we’ve only looked into one example of expressing a particular modal logic in Lµ, one can
express many more in Lµ as well, such as CTL*, as well as its fragments CTL and and
LTL. Such results lend further credence to our claim that Lµ is an expressive, powerful
logic.

10

References

[BdRV02] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2002.

[Ber81] Francine Berman. Semantics of looping programs in propositional dynamic logic.
Mathematical systems theory, 15(1):285–294, 1981.

[BS06] Julian Bradfield and Colin Stirling. Modal mu-calculi. In J. van Benthem
P. Blackburn and F. Wolter, editors, The Handbook of Modal Logic, pages 721–
756. Elsevier, 2006.

[FL79] Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular
programs. Journal of computer and system sciences, 18(2):194–211, 1979.

[Koz83] Dexter Kozen. Results on the propositional -calculus. Theoretical Computer
Science, 27(3):333 – 354, 1983. Special Issue Ninth International Colloquium on
Automata, Languages and Programming (ICALP) Aarhus, Summer 1982.

[Pra81] V.R. Pratt. A decidable mu-calculus: Preliminary report. In Foundations of
Computer Science, 1981. SFCS ’81. 22nd Annual Symposium on, pages 421–427,
Oct 1981.

[Str82] Robert S. Streett. Propositional dynamic logic of looping and converse is ele-
mentarily decidable. Information and Control, 54(12):121 – 141, 1982.

11

